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Abstract
Circadian rhythms regulate key physiological processes through clock genes in central and peripheral tissues. While 
circadian gene expression during development has been well studied, the temporal dynamics of metabolism across tis-
sues remain less understood. Here, we present the Circadian Ontogenetic Metabolomics Atlas (COMA), which maps 
circadian metabolic rhythms across 16 rat anatomical structures. The brain (suprachiasmatic nuclei, medial prefrontal 
cortex) and periphery (liver, plasma) span developmental stages from embryonic E19 to postnatal P2, P10, P20, and P28. 
Fecal samples include all four postnatal stages, while additional peripheral tissues were analyzed at P20 and P28. Using 
a multiplatform liquid chromatography–mass spectrometry approach, we annotated 851 metabolites from 1610 samples. 
We identified distinct circadian shifts, particularly during the transition from nursing to solid food intake (P10–P20), with 
an average of 24% of metabolites exhibiting circadian oscillations across sample types, as determined by JTK_CYCLE. 
Our study also underscores the importance of standardized sampling, as metabolite intensities fluctuate with both circadian 
rhythms and development. COMA serves as an open-access resource ( h t t p  s : /  / c o m  a .  m e t  a b o l  o m i  c s .  f g u . c a s . c z) for exploring 
circadian metabolic regulation and its role in developmental biology.
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Introduction

The circadian rhythm, an approximately 24-hour physiolog-
ical cycle, is ubiquitous across many organisms [1–3]. In 
mammals, it is orchestrated by a complex system involving 
a central clock located in the suprachiasmatic nuclei (SCN) 
of the hypothalamus, along with peripheral clocks distrib-
uted across neural structures and within peripheral tissues 
and organs [4–6]. The development of these circadian clocks 
during the prenatal period depends on the intricate differen-
tiation and maturation of specific anatomical structures [7]. 
For example, in rats, neurogenesis within the SCN begins 
around embryonic day (E)14 and continues until E17 [8, 9]. 
This neurogenic process originates from a specialized zone 
within the ventral diencephalic germinal epithelium, which 
is part of the periventricular cell group. Although neurogen-
esis is complete by E18, morphological maturation of SCN 
neurons continues progressively until postnatal day (P)10 
[10, 11].

In adults, the circadian system is hierarchically orga-
nized, with the central clock synchronizing subordinate 
clocks throughout the body, which is crucial for adapting 
physiological functions to cyclic external conditions. This 
system undergoes substantial developmental changes, 
including shifts in its responsiveness to external cues [12]. 
During the prenatal period, maternal signals primarily 
entrain the developing clock, whereas postnatally, the light–
dark cycle becomes the dominant zeitgeber. The central 
clock acquires its functional properties gradually through a 
programmed process [13, 14], eventually entraining periph-
eral clocks that exhibit autonomous rhythmicity at different 
developmental stages [15]. In early development, maternal 
feeding is a primary driver of peripheral clock entrainment. 
As development progresses, the central clock becomes fully 
functional and takes over this regulatory role [11].

Despite extensive research primarily focused on gene 
expression, the development of circadian rhythmicity 
remains a subject of ongoing exploration [16]. Recent find-
ings suggest cellular coupling and tissue-wide synchroni-
zation of single-cell rhythms may not occur until late in 
embryogenesis [10]. Our research and others have pro-
vided evidence that, throughout development, the phase 
of clock gene expression rhythms in certain tissues gradu-
ally shifts until reaching the adult stage [17, 18]. However, 
despite these advances, studies on circadian rhythmicity 
at the metabolite level during development remain scarce. 
Although transcriptomics has illuminated a substantial por-
tion of the genome regulated by the molecular clock, metab-
olomics has been limited by the lack of robust analytical 
platforms and bioinformatics tools

Nevertheless, in the past decade, it has been shown that 
chemical profiling of biological specimens using mass 

spectrometry-based metabolomics is valuable in reveal-
ing the influence of the circadian clock on both mouse 
and human metabolism [19–22]. The circadian metabo-
lome has been mapped under various conditions, such as 
sleep deprivation [23–25], jet lag [26, 27], exercise [28, 
29], genetic perturbation [30, 31], different states of neu-
ronal excitability [32], aging [33–35], acute or chronic 
cold exposure [36, 37], and nutritional challenges [38–40]. 
Most of these studies have analyzed plasma or serum, 
given their accessibility and role as a critical link between 
peripheral tissues. Recently, mapping metabolite dynam-
ics over 24 h in plasma and multiple tissues, including 
liver, muscle, medial prefrontal cortex (mPFC), SCN, 
sperm, white adipose tissue (WAT), and brown adipose 
tissue (BAT) in response to chow and high-fat diets has 
been reported to provide important temporal insights [38]. 
Similarly, another study profiled serum and several tissues 
(muscle, liver, hypothalamus, heart, WAT, and BAT) fol-
lowing acute exercise performed at different times of the 
day [28].

Compared to circadian gene expression profiles, com-
prehensive bioinformatics resources mapping the circa-
dian metabolite profiles in humans, mice, and rats are 
rare. The CircadiOmics portal, originally developed for 
transcriptomic data, was recently expanded to include 
metabolomic data from various mouse tissues analyzed 
using a multiplatform liquid chromatography–mass 
spectrometry (LC–MS) approach [38]. This resource 
allows users to explore hundreds of metabolites with 
circadian regulation, facilitating hypothesis generation 
and validation. A few datasets are available for down-
load as supplementary materials from published studies 
[38, 41]. While not explicitly focused on the circadian 
metabolome, some attempts have been made to create 
metabolome databases for multiple tissues [42, 43]. 
However, these studies relied on a single analytical 
platform, capturing only a subset of the metabolome. 
This underscores the insufficient data on the circadian 
metabolome characterizing diverse tissues, emphasizing 
the need for easily accessible and reusable resources for 
future studies, as we recently highlighted in our discus-
sion of metabolomics atlases [44].

To address this gap, we aimed to create an interac-
tive, open-access atlas focused on the ontogenetic devel-
opment of rats. This resource provides comprehensive 
metabolomics data across plasma, multiple tissues, and 
feces using a multiplatform LC–MS approach. Further-
more, by sharing raw LC–MS instrumental files, we 
facilitate retrospective data mining, potentially lead-
ing to additional annotations for unknown metabolites 
through spectral library search or the discovery of novel 
metabolites.
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Materials and methods

Experiments with animals

Three-month-old male and female Wistar: Han rats (Insti-
tute of Physiology of the Czech Academy of Sciences) were 
kept under a 12:12 h light–dark cycle (lights on at 06:00 
a.m., designated Zeitgeber time 0) at 21 ± 2 °C with free 
access to food and water. Overhead 40 W fluorescent tubes 
provided light, resulting in illumination levels of 150 lx, 
varying based on cage position in the animal room. Female 
rats were mated with males, and those with positive sperm 
in vaginal smears were individually housed.

Fetuses were collected from the first group at embry-
onic day E19, while other groups were studied for post-
natal development. After delivery on postnatal day 0 (P0), 
dams and their pups were maintained under a 12:12 h 
light–dark cycle, with the pups undisturbed and raised by 
their mother during lactation (P0–P20) on a standard diet 
(pellets). To collect the samples during the 24-hour cycle, 
fetuses were killed by rapid decapitation, and pups were 
euthanized at P2, P10, P20, and P28 with an overdose of 
thiopental (50 mg/kg, i.p.). Tissues (SCN, mPFC, liver) and 
plasma were collected for all five developmental stages. 
Feces were collected for P2, P10, P20, and P28 stages. For 
the P20 and P28 stages, additional tissues (kidney, heart, 
lungs, spleen, pancreas, small intestine (jejunum), stom-
ach, gastrocnemius skeletal muscle, intrascapular WAT 
(isWAT), dorso-lumbar WAT (dlWAT), and intrascapular 
BAT (iBAT)) were collected. All samples were collected at 
Zeitgeber times 0, 4, 8, 12, 16, 20, and 24 h, each with five 
replicates. Samples for LC–MS were promptly stored at 
− 80 °C until further processing and analysis, with plasma 
prepared from abdominal/thoracic blood using EDTA col-
lection tubes. For the reverse transcription-quantitative 
polymerase chain reaction (RT qPCR) method, dlWAT 
samples were immersed in RNAlater (Merck), pancreas 
samples were immediately homogenized using ceramic 
beads in RNA isolation buffer (GenElute Total RNA kit, 
Merck), and whole brains were frozen in dry ice before 
storage at − 80 °C. Brains were sectioned on cryocut, and 
SCN samples were dissected using laser-capture microdis-
section as described previously [45].

LC–MS-based metabolomics

For the sample extraction, a biphasic solvent system of 
methanol, methyl tert-butyl ether, and water was used to 
isolate complex lipids and polar metabolites. Six different 
LC–MS platforms [46] were used for profiling plasma, non-
fat tissues, and feces with optimized conditions described 
before [47]: (1) hydrophilic interaction chromatography 

(HILIC) metabolomics in positive electrospray ionization 
mode (ESI(+)), (2) HILIC metabolomics in negative elec-
trospray ionization mode (ESI(−)), (3) reversed-phase liq-
uid chromatography (RPLC) metabolomics in ESI(+), (4) 
RPLC metabolomics in ESI(−), (5) RPLC lipidomics in 
ESI(+), and (6) RPLC lipidomics ESI(−), and (7) additional 
RPLC lipidomics analysis in ESI(+) on adipose tissues to 
detect abundant triacylglycerols.

Details about the sample extraction methods for each 
matrix, LC–MS analysis conditions, enhanced MS/MS 
spectra acquisition for metabolite annotation, quality con-
trol procedures, and LC–MS data processing are provided in 
the Supplemental Information. A list of annotated metabo-
lites can be found in Table S1.

RT qPCR

The RT qPCR method was used to detect Per1, Per2, Nr1d1/
Rev-Erbα, Nfil3/E4bp4, Dbp, Cry1, and Bmal1 mRNA lev-
els in selected tissues (3–5 replicates × group × time point). 
First, RNA was isolated using GenElute Total RNA kit 
(Merck, peripheral tissues) or RNeasy Micro kit (Qiagen, 
SCN), up to 0.5 µg was then reverse-transcribed using a 
High Capacity cDNA RT Kit (ThermoFisher). Diluted 
cDNA was then amplified on LightCycler480 (Roche) 
using SYBR Select qPCR Master Mix (ThermoFisher) as 
described previously [45, 48–50]. Liver samples were ana-
lyzed previously [18] and are included in the COMA dataset 
for convenience.

Statistical analysis and data visualization

JTK_CYCLE, designed to identify and characterize 
cycling variables in large datasets, was used [51]. The 
metabolomics data were log10 transformed and median 
normalized, followed by running the R script JTK_
CYCLE v.3 with parameters: timepoints = 7, reps = 5, 
periods = 6, interval = 4. Metabolites with permutation-
based p-values (ADJ.P) < 0.05 were considered statisti-
cally significant [41]. Reported p-values (ADJ.P) are, by 
default, Bonferroni-adjusted for multiple testing [51]. 
For “Outlier-free” analysis, data were log10 transformed, 
and for each group of 5 biological replicates, data points 
outside ±4 times the median absolute deviation were 
considered outliers and removed. For clustering analysis, 
data were log10 transformed and z-score normalized. For 
statistically significant metabolites (JTK_CYCLE, p < 
0.05), the profiles were fitted to one of the six key clus-
ters, with each graph displaying the number of metabo-
lites in the cluster and their average Pearson correlation 
coefficient. Data from RT qPCR as relative expression 
were not further normalized.
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Results

Building circadian ontogenetic metabolomics atlas 
(COMA)

We have studied the development of the circadian metabo-
lome of rat brain, specifically in the SCN and mPFC, as well 
as in peripheral tissues such as the liver and plasma. This 
study spans five developmental stages, including embry-
onic E19 and postnatal stages P2, P10, P20, and P28 (see 
Fig. 1). Fecal samples were collected at all postnatal stages. 
For postnatal stages P20 and P28, additional tissues were 
collected, including the kidney, heart, lungs, spleen, pan-
creas, small intestine (jejunum), stomach, gastrocnemius 
skeletal muscle, isWAT, dlWAT, and iBAT. Sampling was 
conducted at Zeitgeber times 0, 4, 8, 12, 16, 20, and 24 h 
for all developmental stages. Following a well-established 
approach, clock gene analysis was also performed for SCN, 
liver, pancreas, and dlWAT.

As the construction of comprehensive mass spectrome-
try-based metabolomics and lipidomics atlases is an emerg-
ing field [44], we provide detailed information below and 
in the experimental section on sample preparation, instru-
mental platforms, data processing and curation, as well as 
quality control.

We analyzed 1610 study samples using untargeted LC–
MS-based metabolomics platforms, accompanied by method 
blanks and quality control samples. To reduce extract com-
plexity, we employed an “all-in-one” extraction approach 
(LIMeX) with methanol, methyl tert-butyl ether, and water 
[46, 47], resulting in two phases: the upper one containing 
nonpolar metabolites (complex lipids) and the bottom one 
mostly consisting of polar metabolites. The optimal plasma 
volume, tissue amount for extraction, collected aliquots, 
resuspension solvent volumes, and injection volumes were 
determined during a pilot study. The final injection volumes 
were confirmed using quality control samples before ana-
lyzing all study samples.

Each of these fractions underwent analysis under dif-
ferent separation conditions: HILIC for highly polar 
metabolites such as amino acids, biogenic amines, sugars, 
nucleotides, acylcarnitines, and sugar phosphates; RPLC 
for medium polar metabolites; and RPLC analysis of com-
plex lipids. The optimal conditions of each LC–MS plat-
form were based on our previously published methods [47], 
incorporating a high-throughput approach with each sample 
analyzed in less than 5 min [46].

LC–MS/MS raw data were processed using MS-DIAL 
software [53], including annotating polar metabolites 
(metabolomics workflow) and complex lipids (lipidomics 
workflow). All mass spectra underwent manual investiga-
tion, utilizing retention times and mass spectral information 

Differential RhythmicitY analysis in R (dryR), devel-
oped to analyze rhythmicity in datasets comprising sev-
eral conditions, was also used [52]. The metabolomics 
data were log10 transformed and median normalized, 
followed by execution of the R script dryR. The script 
(using f_24 function) was run separately for each matrix 
× developmental stage combination, reporting p-values 
corrected for multiple testing using the Benjamini–
Hochberg method (padj). For the late developmental 
stages P20 and P28, the script was also run in parallel 
(using drylm function) to report rhythmicity models 
across these two conditions (Table S2), where model 
codes represent: 0 — no data available for calculation, 
1 — non-rhythmic, 2 — loss of rhythm, 3 — gain of 
rhythm, 4 — unaltered rhythm, and 5 — altered rhythm. 
The distinction between models 4 and 5 is based on fit-
ting the equation y(t) = µ + αcos(ωt) + βsin(ωt), with 
identical α and β coefficients for model 4, and differing 
coefficients for model 5.

For multivariate analyses such as principal component 
analysis (PCA) and partial least squares-discriminant anal-
ysis (PLS-DA), the metabolomics data were log10 trans-
formed and Pareto-scaled. For PCA, score and loading plots 
are provided, while for PLS-DA, variable importance in 
projection (VIP) scores are also reported. PLS-DA models 
were further assessed by 5-fold cross-validation, reporting 
the Q² performance measure (an estimate of the model’s 
predictive ability) and permutation test results (n = 1000), 
yielding an empirical p-value.

The final dataset of polar metabolites, complex lipids, 
and clock genes for all samples was visualized in Plotly 
using a Python-based Flask web application. Circadian pro-
files are expressed as mean ± standard deviation for a par-
ticular group × time point.

Website implementation

Circadian Ontogenetic Metabolomics Atlas (COMA) is an 
interactive web application built using the Flask framework 
( h t t p  s : /  / fl  a  s k  . p a  l l e t  s p r  o j e  c t s . c o m). The app uses an SQLite 
database (https://www.sqlite.org) accessed via  F l a s k - S Q L 
A l c h e m y for efficient data storage and management. The 
front end is styled with Bootstrap  (   h t t p s : / / g e t b o o t s t r a p . c 
o m     ) , CSS (Cascading Style Sheets), and JavaScript. For 
visualizations, it uses Plotly (https://plotly.com/python), 
providing dynamic, interactive graphs. The app supports 
scientific analysis with machine learning algorithms from 
scikit-learn (https://scikit-learn.org), including PCA and 
PLS-DA, and integrates the JTK_CYCLE ( h t t p  s : /  / s i t  e s  . w 
u  s t l .  e d u  / h u  g h e s l a b / j t k _ c y c l e) and dryR algorithms ( h t t p  s : /  
/ g i t  h u  b . c  o m / n  a e f  - l a  b / d r y R) for detecting rhythmic compo-
nents in the data.
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variance. Analysis of the SQC samples revealed that 84% 
of all annotated metabolites had excellent reproducibil-
ity, with relative standard deviations (RSD) below 10%. 
Furthermore, 99.2% of metabolites showed RSD val-
ues below 20%, underscoring the high quality and con-
sistency of the dataset (Table S1). In total, 851 distinct 
metabolites were annotated and passed the quality control 
criteria (see Supplementary materials and methods). Col-
oring the PCA plots by matrices revealed clear biological 
differences among sample types. Fig. S3 shows samples 
from the SCN, mPFC, plasma, and feces formed distinct 
clusters, indicating pronounced metabolic differences in 
these compartments. In contrast, other tissue samples 
exhibited greater overlap, reflecting more subtle meta-
bolic variation.

from MS1 and MS/MS libraries. To assess the precision 
of the overall analytical method, a superior quality con-
trol (SQC) sample was prepared by pooling QC samples 
from each matrix to reflect an aggregated metabolite com-
position. This SQC sample was aliquoted and repeatedly 
injected after every set of 35 samples (Fig. S1) and used 
to correct longitudinal signal drifts using locally estimated 
scatterplot smoothing (LOESS).

Overall analytical precision was evaluated through 
PCA of the total variance. As shown in the PCA score 
plot (Fig. S2), the tight clustering of SQC injections indi-
cates minimal residual technical variability. In contrast, 
metabolomic and lipidomic profiles from different rat 
samples were more dispersed, with the first two principal 
components explaining over 42% of the total biological 

Fig. 1 Graphic illustration of the workflow toward building circadian ontogenetic metabolomics atlas of rat plasma, tissues, and feces
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metabolites.” Profiles and outcomes of the JTK_CYCLE 
and dryR algorithms are displayed when selecting particu-
lar metabolites. Data are visualized for each developmental 
stage (E19, P2, P10, P20, and P28), along with the collected 
matrix and the calculated adjusted p-value (see an example 
of the amino acid citrulline) in Fig. 2-B. Oscillating metabo-
lites (p < 0.05) are colored by default, while non-oscillating 
metabolites are gray. Users can adjust the p-value thresh-
old according to their preferences. Results are available to 
the entire dataset without outlier detection (marked as the 
“Original” dataset) and after removing outliers based on the 
median value and the absolute deviation from the median, 
using upper and lower limits determined 4 times the median 
absolute deviation (marked as the “Outlier-free” dataset). 
Changes take effect after clicking the “Refresh plot” but-
ton, enabling users to compare the outcomes of both data 
pretreatment approaches.

The “Overview” section provides a general overview of 
the composition of the analyzed matrices for each develop-
mental stage. A sunburst graph visualizes hierarchical data 
in concentric circles, displaying the total number of unique 
annotated metabolites for each matrix and developmental 
stage, sorted into polar metabolites, complex lipids, and 
their respective classes. It also presents the total number of 
circadian metabolites identified using the JTK_CYCLE or 
dryR algorithms with a significance level of p < 0.05. Datas-
ets without and with outlier detection were used, and metab-
olites with p-values above the threshold (0.05) are depicted 
in gray.

The “Clustering” section introduces categories for each 
matrix and developmental stage, combining JTK_CYCLE 
(p < 0.05) [51] and fuzzy c-means clustering [40, 55]. Six 
key categories indicate metabolite clusters with specific 
temporal dynamics based on the initial evaluation of each 
developmental stage and matrix, and considering typical 
clusters reported in the literature [40, 56]. The line width and 
opacity on each graph indicate the number of metabolites.

The “Explorer” section encompasses a statistical analy-
sis of analyzed matrices, irrespective of Zeitgeber times. 
Matrices are categorized into digestive (liver, pancreas, 
stomach, small intestine), excretory (kidney, feces), respi-
ratory (lungs), endocrine (spleen, isWAT, dlWAT, iBAT), 
muscular (gastrocnemius skeletal muscle), cardiovascular 
(plasma, heart), and nervous (SCN, mPFC) systems. Results 
of multivariate data analysis are presented using unsuper-
vised PCA to visualize the first two principal components 

The annotated metabolites were used for subsequent sta-
tistical analyses, including JTK_CYCLE, a nonparametric 
algorithm for detecting rhythmic components in large datas-
ets [51], and the recently introduced dryR algorithm, which 
assesses differential rhythmicity in time series data [52]. In 
addition, the metabolites were also included in multivariate 
analyses such as PCA and PLS-DA to provide an overview 
of the dataset [54].

As anticipated, complex lipids constituted the majority 
of reported metabolites (71%) due to their high endogenous 
content in various biological matrices. Main lipid classes 
included (lyso-)phosphatidylcholines (LPC, PC), (lyso-)
phosphatidylethanolamines (LPE, PE), triacylglycerols 
(TG), free fatty acids (FA), acylcarnitines (CAR), phospha-
tidylserines (PS), phosphatidylinositols (PI), phosphatidyl-
glycerols (PG), sphingomyelins (SM), ceramides (Cer), and 
diacylglycerols (DG). Organic acids, amino acids, modified 
amino acids, peptides, hydroxy acids, organic oxygen com-
pounds, organoheterocyclic compounds, organic nitrogen 
compounds, nucleosides, nucleotides, and others were the 
main components of the polar metabolome.

Furthermore, the RT qPCR method [45, 48] was 
employed to detect mRNA levels of clock genes in the liver 
(Per1, Per2, Rev-Erbα, Cry1, Bmal1, Clock), SCN (Per2, 
Rev-Erbα, Bmal1, Dbp, E4bp4), pancreas, and dlWAT 
(Per2, Rev-Erbα) for further investigation of the rhythmic-
ity during ontogenesis.

Web application

The dataset for this study comprises 1610 samples, each 
containing hundreds of annotated metabolites, including 
polar metabolites and complex lipids. Clock gene data are 
also available for four matrices: liver, SCN, pancreas, and 
dlWAT. Consequently, we developed the Circadian Ontoge-
netic Metabolomics Atlas (COMA), a web-based applica-
tion for facilitating data visualization and interpretation ( h t t 
p  s : /  / c o m  a .  m e t  a b o l  o m i  c s .  f g u . c a s . c z).

The atlas is structured into five main sections (Fig. 2A), 
offering circadian profiles and outcomes of JTK_CYCLE 
and dryR algorithms for polar metabolites and complex lip-
ids in matrices, a general overview of detected metabolites 
in matrices for each developmental stage, clustering of cir-
cadian metabolites in matrices, multivariate data analysis 
of metabolites in matrices irrespective of time points, and 
study design.

The “Metabolites” section overviews all polar metabo-
lites and complex lipids. Users can search for a specific 
metabolite by name, molecular formula, and InChIKey. 
Additional search options for complex lipids include the 
number of carbons and double bonds. The “Metabolomics” 
section is further divided into “Complex lipids” and “Polar 

Fig. 2 Circadian Ontogenetic Metabolomics Atlas website. (A) The 
initial web page of the Circadian Ontogenetic Metabolomics Atlas; 
(B) example of data visualization of the amino acid citrulline in plasma 
(PLS) and the liver (LIV) in the “Metabolites” section using the 
original dataset and JTK_CYCLE algorithm. Oscillating metabolites 
(p<0.05, Bonferroni-adjusted for multiple testing, ADJ.P) are colored 
by default, while non-oscillating metabolites are gray
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(C) Metabolites exhibiting a gradual increase during the 
daytime inactive phase and a rapid decrease when feed-
ing starts at night;

(D) Metabolites rapidly decreasing at the onset of the inac-
tive phase, rising upon feeding until plateauing in the 
middle of the night;

(E) Metabolites exhibiting a gradual increase during the 
daytime inactive phase and a rapid decrease when feed-
ing starts at night;

(F) Metabolites with a shallower decline during the inactive 
phase, a temporary decrease at the onset of feeding, fol-
lowed by an increase 2 h after feeding begins.

For the E19 developmental stage, cluster A contained the 
highest number of metabolites (32%) within the clusters, 
whereas for P2 and P10, metabolites in cluster F dominated 
(45% and 65%, respectively). In the late developmental 
stage P20, cluster B exhibited the highest number of metab-
olites (42%), while metabolites in cluster A dominated the 
developmental stage P28 (40%). These data suggest that 
metabolite profiles undergo significant changes during 
ontogenesis.

Since the lipidome constituted the largest proportion of 
reported metabolites, we also implemented downloaded 
lists of lipids formatted for a recently introduced web-based 
tool called Lipid Over-Representation Analysis (LORA) 
[57]. LORA determines whether a priori-defined set of lip-
ids is more present (over-represented) in a subset of lipids 
than would be expected by chance. A list of query lipids can 
be downloaded from the “Cluster” section for each matrix 
and developmental stage. Additionally, the entire reference 
lipidome can be obtained from the “Download” section 
(lipidome_universe.csv) and uploaded to the LORA tool 
at  h t t p  s : /  / l o r  a .  m e t  a b o l  o m i  c s .  f g u . c a s . c z. Fig. S4 illustrates 
an example of plasma at the P28 developmental stage for 
cluster A, revealing 127 statistically significant metabolites, 
most of which (n = 120) are complex lipids. The UpSet plot 
helps identify the main structural features of enriched lipids 
and highlights important lipids in a graphical representation, 
particularly TGs containing 10:0, 12:0, and 14:0 fatty acyl 
chains. Using the cardinality bar plot, the cluster with the 
highest term intersection size (n = 18) contained TGs with a 
10:0 fatty acyl chain. The second cluster contained 14 lipid 
species with TGs containing a 12:0 fatty acyl chain.

Furthermore, the atlas can also be used for a more gen-
eral audience using the “Explorer” function. Using PLS-DA 

through scores and loadings plots. Supervised PLS-DA is 
displayed with the first two components in scores and load-
ings plot formats, featuring a color-based gradient indicating 
VIP scores for all metabolites. In both PCA and PLS-DA, 
samples in score plots are color-coded based on the devel-
opmental stage. A sunburst graph offers a comprehensive 
overview of annotated metabolites in a specific matrix. Box 
plots are also presented for each metabolite sorted by VIP, 
and clicking on another metabolite updates the correspond-
ing box plot.

The “Study design” section summarizes experimental 
conditions, including details about experiments involving 
animals, the methodology employed, and abbreviations uti-
lized throughout the atlas.

Clock genes are accessible using the upper panel, and 
the data are visualized similarly to that of metabolites. This 
panel also includes a download section where users can 
download the whole data set, including metadata.

Exploring the circadian ontogenetic metabolomics 
atlas

In the following examples, we provide a snapshot of the 
results of the Circadian Ontogenetic Metabolomics Atlas, 
including the investigation of circadian metabolites in each 
matrix and developmental stage, the clustering of metabo-
lites, and finally, general exploration using multivariate data 
analysis.

The results from applying the JTK_CYCLE and dryR 
algorithms to identify and characterize cycling metabolites 
are shown in Fig. 3. The figure provides an overview of the 
percentage of circadian metabolites, defined as those with 
adjusted p-values (< 0.05; ADJ.P for JTK_CYCLE and padj 
for dryR) and a period (PER) of 24 h. Across matrices and 
developmental stages, the average percentage of oscillat-
ing metabolites was approximately 24% with JTK_CYCLE 
and 12% with dryR. Stomach tissue, SCN, and mPFC were 
identified with the lowest number of circadian metabolites, 
while dlWAT, isWAT, liver, and plasma had the highest 
number of circadian metabolites.

An example of the clustering of metabolites is provided 
in Fig. 4 on plasma samples for all five developmental 
stages, illustrating commonalities in their temporal dynam-
ics. These categories of the clusters can be characterized as 
follows:

(A) Metabolites with a gradual increase during the daytime 
inactive phase, reaching a maximum of around 4–8 h, 
followed by a decrease with a minimum at 16–20 h;

(B) Metabolites with a gradual decrease during the daytime 
inactive phase, reaching a minimum of around 4–8 h, 
followed by an increase with a maximum at 16–20 h;

Fig. 3 Overview of the total number and percentage of circadian 
metabolites by matrix and developmental stage. The original dataset 
(without outlier analysis) was processed using (A) JTK_CYCLE, con-
sidering metabolites with Bonferroni-adjusted p<0.05 (ADJ.P) as sta-
tistically significant, and (B) dryR, considering metabolites with Ben-
jamini–Hochberg-adjusted p<0.05 (padj) as statistically significant
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(Fig. 5E). These examples also show that the metabolome 
undergoes dramatic changes from the fetal to late postnatal 
developmental stages. For the rest of the matrices collected at 
the P20 and P28 postnatal stages, differences were observed 
in a way that a few metabolites occurred only in one develop-
mental stage or differed in their intensities for most of them. 
These data also underscore the critical role of sampling time 
in metabolomics analyses, as the intensity of specific metabo-
lites can vary significantly based on the time of collection and 
developmental stage. Metabolites are influenced by circadian 
rhythms, which govern biological processes and fluctuate 
throughout the day and night. This timing-dependent variation 
can impact the detection and quantification of metabolites, 

and VIP scores, it became apparent that distinct metabolites 
were characteristic of the analyzed matrices. For instance, in 
plasma, inosine (a nucleoside) dominated during the fetal E19 
stage, continuously declining in postnatal stages. In the liver, 
glycocholic acid (a bile acid) was completely absent during 
fetal and early postnatal P2 and P10 stages and dominated in 
the P20 and P28 stages (Fig. 5A, B). In the SCN, the lipid PI 
32:0 was also absent during the fetal and early postnatal P2 
stage and increased over the P10, P20, and P28 stages (Fig. 
5C). Similarly, HexCer 42:1;O2 was detected at higher levels 
in mPFC during postnatal P20/P28 stages (Fig. 5D). In feces, 
the vitamin riboflavin dominated during the early postnatal 
P2/P10 stages and was almost absent in the P20/P28 stages 

Fig. 4 Cluster analysis of plasma samples by developmental stage. Six clustering categories are shown. Only polar metabolites and complex lipids 
with significant circadian oscillation (JTK_CYCLE, ADJ.P<0.05) were included in the analysis
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more signals can be detected, characterized by retention 
time and m/z (i.e., molecular features) [60]. The raw LC–
MS instrumental files provided with this atlas can be repro-
cessed, including updated MS/MS libraries, to increase 
the annotation rate further, or researchers can focus on the 
structural elucidation of unknown metabolites.

For example, we initially observed an unknown with a 
retention time of 2.2 min and m/z 188.1757 without any 
positive spectral match when using the combined MS/
MS libraries during the HILIC platform in positive ion 
mode. Submitting MS1 isotopic ions and the MS/MS 
spectrum from MS-DIAL [53] to the MS-FINDER [61] 
software for structural elucidation provided over 100 pos-
sible unique structures. Since focusing on many structures 
would be challenging, we utilized the potential of hydro-
gen/deuterium exchange mass spectrometry (HDX-MS). 
Thus, for the HILIC–MS metabolomics platform, which 
uses acetonitrile/water (95:5) and water as mobile phases, 
both with ammonium formate and formic acid, water and 

potentially leading to biased or inaccurate interpretations 
if sampling is inconsistent. Using animals within the same 
developmental stage, or “age-matched” subjects, alongside 
standardized sampling times, is essential to minimize variabil-
ity and improve sample comparability.

Users can also explore the analysis of clock genes. 
For instance, Bmal1, Per2, Nr1d1, and Dbp, in the SCN, 
revealed shallow rhythms at E19, followed by initiation 
at P2. Rhythms increased at P10, and high amplitude was 
observed at the P20 and P28 developmental stages (Fig. S5), 
as observed before in fetal E20 and early postnatal P1, P2 
[58], and P10 [59] developmental stages, as well as in adult 
rats [11].

Potential for the discovery of novel metabolites

Hundreds of unique metabolites can usually be annotated 
while combining multiple platforms during untargeted 
metabolomics and lipidomics analyses. However, many 

Fig. 5 Box plots for the most discriminating metabolites in (A) plasma, (B) liver, (C) SCN, (D) mPFC, and (E) feces at different developmental 
stages based on PLS-DA and VIP
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labeled counterparts. Furthermore, N1-acetylspermidine 
exhibited circadian rhythmicity in different tissues at late 
developmental stages (P20, P28), as shown in the example 
of gastrocnemius skeletal muscle (Fig. 6).

Discussion

Selection of matrices and developmental stages

We investigated the development of the circadian metab-
olome in the rat brain (SCN, mPFC) and periphery (liver, 

mobile-phase modifiers were replaced by their deuterated 
forms (D2O, ammonium formate-d5, formic acid-d2). This 
setup permitted complete hydrogen/deuterium exchange 
and an additional filter from hydrogen/deuterium exchange 
mass spectrometry (HDX-MS) [62], reducing the number 
of potential candidates to one-fifth due to four labile hydro-
gens in the molecule as determined by a mass spectrometer. 
The subsequent analysis of the standard of N1-acetylspermi-
dine confirmed the identity of this unknown based on reten-
tion time, MS1, and MS/MS spectra, including the number 
of exchangeable hydrogens in the parent ion and fragments 
(Fig. 6) when using unlabeled mobile-phase modifiers and 

Fig. 6 Structure elucidation of an unknown metabolite. (A, B) 
Extracted ion chromatograms (EICs) and MS/MS spectra of N1-ace-
tylspermidine in (A) rat gastrocnemius skeletal muscle and (B) ana-
lytical standard analysis under conventional HILIC–MS with the EIC 
at m/z 188.1757 displayed corresponding to [M(H4)+H]+. (C, D) EICs 
and MS/MS spectra of N1-acetylspermidine in (C) rat gastrocnemius 

skeletal muscle and (D) analytical standard analysis under HILIC–
HDX-MS with the EIC at m/z 193.2071 displayed corresponding to 
[M(D4)+D]+. (E) Circadian rhythmicity of N1-acetylspermidine in gas-
trocnemius skeletal muscle at the P28 developmental stage, calculated 
using JTK_CYCLE with a Bonferroni-adjusted p-value (ADJ.P). (F) 
Structure of N1-acetylspermidine
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The chosen developmental stages represent key mile-
stones in rat development [10, 11]. At E19, neurogenesis is 
completed, although the morphological maturation of SCN 
neurons has not yet been concluded. In the early postnatal 
period (P2), substantial reorganization and functional spe-
cialization occur in the rat SCN, forming various cell sub-
populations. By postnatal stage P10, the SCN clock is fully 
developed, while the pups’ eyes remain closed, and they 
are still entirely dependent on maternal care. The period 
between P10 and P20/P28 marks a developmental phase 
during which pups gain sight, experience a gradual decline 
in breast milk intake, and initiate solid food consumption 
at night, influencing the phases of their peripheral clocks 
[76]. A comparison between postnatal stages P20 and P28 
was included to generate evidence for arguments in favor of 
or against premature weaning, typically performed at P21. 
Some studies suggest that later stages might be more appro-
priate [77].

Experimental considerations

When interpreting circadian metabolomics data, it is essen-
tial to account for various experimental aspects that may 
influence the detection and characterization of rhythmic 
metabolites [78]. These variables include diet, feeding 
schedule, light–dark cycle, and sampling time [78]. For 
instance, Dyar et al. [38] demonstrated that, in mice, a chow 
diet maintained strong temporal coherence of metabolites 
within and across tissues, whereas a high-fat diet disrupted 
this coherence and rewired circadian metabolism. Addition-
ally, under ad libitum (free-feeding) conditions, rodents 
(particularly nocturnal species like rats and mice) often 
engage in sporadic daytime feeding or “snacking” behavior, 
which can influence both metabolomic and transcriptomic 
profiles [52, 79].

Although laboratory conditions provide tight control of 
light and feeding, real-world factors like shift work and arti-
ficial lighting can significantly disrupt circadian rhythms, 
affecting metabolic oscillation amplitude, phase, and 
robustness [78]. Future studies incorporating dynamic envi-
ronmental conditions or leveraging human cohort data with 
diverse lifestyle factors could enhance our understanding of 
how external cues influence circadian metabolic regulation.

In addition to experimental factors, statistical modeling 
also plays a crucial role. In our analysis, we applied the 
well-established JTK_CYCLE algorithm [51] alongside the 
recently introduced dryR model [52]. Across matrices and 
developmental stages, the average percentage of oscillating 
metabolites was approximately 24% with JTK_CYCLE and 
12% with dryR. This two-fold difference can be attributed 
to the underlying assumptions and sensitivity of the respec-
tive methods. JTK_CYCLE is a nonparametric algorithm 

plasma) across five different developmental stages. Further-
more, feces were studied at four developmental stages (P2, 
P10, P20, P28), while the other 11 tissues (kidney, heart, 
lung, spleen, pancreas, small intestine (jejunum), stomach, 
gastrocnemius skeletal muscle, isWAT, dlWAT, and iBAT) 
were examined at late developmental stages (P20, P28). 
As a well-established approach, clock gene expression was 
analyzed in the SCN, liver, pancreas, and ldWAT.

The SCN and mPFC were selected due to their signifi-
cant developmental changes during both embryonic and 
postnatal stages. The SCN, as the central circadian clock, 
plays a crucial role in developing the circadian system [10]. 
The liver, where approximately 10% of the transcriptome 
exhibits rhythmic expression, regulates glucose, lipid, and 
nutrient homeostasis, as well as bile acid synthesis and 
metabolism. Plasma, acting as a vital link between periph-
eral tissues [63], was also included in the study. Feces were 
included because the circadian system influences various 
gastrointestinal processes and is influenced by feeding time 
[64].

Clocks, similar to those found in SCN neurons, are pres-
ent in peripheral tissues [65–67]. For example, various renal 
functions exhibit circadian rhythms, such as renal plasma 
flow and glomerular filtration rate. Alterations in the circa-
dian rhythm of renal functions are associated with develop-
ing hypertension, chronic kidney disease, renal fibrosis, and 
kidney stones [68]. Moreover, evidence indicates a close 
relationship between intrinsic circadian clocks and cardio-
vascular functions. Well-known circadian rhythms include 
diurnal changes in blood pressure and heart rate. Animal 
models and epidemiological studies provide strong evidence 
that the disruption of circadian rhythms is a significant risk 
factor for many cardiovascular diseases [69]. Circadian 
rhythms play an important role in regulating the digestive 
systems of many organisms. Cell proliferation, migration, 
differentiation, and even structure vary as a function of the 
time of day in various digestive organs (such as the liver, 
pancreas, and small intestine) and cell types, leading to 
regionally specific temporal variations in protein and gene 
expression [70, 71]. A link also exists between the circadian 
clock and rhythmic immune functions. The spleen, lymph 
nodes, and peritoneal macrophages contain an autonomously 
intrinsic circadian clockwork [72]. In mammals, pulmonary 
function follows day–night patterns. Hence, the molecular 
clock function in lung cells may function as a biomarker 
for disease severity and exacerbations or for evaluating the 
effectiveness of chronotherapy in disease management [73]. 
The cell-intrinsic clock machinery in skeletal muscle could 
be critical for whole-body metabolic homeostasis [74]. Last 
but not least, the circadian clock controls different aspects 
of lipid metabolism in WAT and BAT, including lipolysis, 
lipogenesis, and BAT thermogenesis [75].
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mature stages. These metabolites, associated with hypoxia 
and energetic stress, suggest a developmental maturation 
from rapid growth to homeostasis [82]. HexCer 42:1;O2 
and related species (HexCer 40:1;O2 and HexCer 41:1;O2) 
increased markedly in the mPFC from E19 to P28 (Fig. 
5D, Fig. S8), aligning with oligodendrocyte maturation 
and myelination. These glycosphingolipids support mem-
brane structure and signaling, and their rise reflects growing 
myelin synthesis and membrane remodeling during postna-
tal cortical development [83]. Glycocholic acid, a glycine-
conjugated primary bile acid, exhibited a marked increase 
in rat liver from early postnatal to weaning stages (Fig. 5B). 
This dramatic shift likely reflects the maturation of hepatic 
bile acid synthesis pathways and the onset of enterohepatic 
circulation, which become fully functional around weaning 
[84]. In the prenatal and early postnatal period (E19–P10), 
the fetal liver has limited bile acid production, and mater-
nal supply dominates. By P20–P28, the weaning transition 
drives increased dietary fat intake, requiring enhanced bile 
acid secretion for digestion and absorption. Riboflavin lev-
els in rat feces were high at early postnatal stages (P2 and 
P10) but declined sharply by P20 and were nearly unde-
tectable at P28 (Fig. 5E). This likely reflects excess ribofla-
vin from maternal milk, immature vitamin absorption, and 
limited microbial utilization in early life [85]. As the gut 
matures and diet shifts during weaning, fecal riboflavin lev-
els decrease accordingly.

An open-access resource for circadian metabolomics

Understanding the circadian regulation of metabolism 
requires comprehensive datasets that capture metabolite 
rhythms across tissues and developmental stages. However, 
bioinformatics resources offering circadian metabolite pro-
files in animals remain limited, and detailed information on 
tissue-specific metabolite composition is scarce. Currently, 
the only available platform is the CircadiOmics web por-
tal ( h t t p  s : /  / c i r  c a  d i o  m i c s  . i g  b . u  c i . e d u), a repository and  a n a 
l y t i c a l tool for circadian omics data (transcriptomic, pro-
teomic, and metabolomic) [86]. It includes metabolomics 
datasets primarily from mouse studies, covering plasma/
serum and various tissues (e.g., brain, liver, muscle, adipose 
tissue) under different experimental conditions (e.g., chow 
vs. high-fat diet, exercise, wild-type vs. knockout models). 
While users can select datasets and request visualizations 
and statistical analyses (using BIO_CYCLE.2 and JTK_
CYCLE), there is no comprehensive browser or complete 
list of metabolites for individual studies. Users must first 
download the metabolite list from the original publication, 
typically from supplementary materials, before querying 
the web portal to search for a particular metabolite. Addi-
tionally, the portal does not include datasets focused on 

optimized for detecting robust, sinusoidal rhythms with 
fixed periods (e.g., 24 h), making it particularly sensitive 
to clear, consistent oscillations. In contrast, dryR uses lin-
ear mixed-effects regression to model rhythmicity, account-
ing for amplitude and phase variability across conditions. 
This makes it more conservative and better suited to iden-
tifying context-specific or differential rhythmicity. Conse-
quently, dryR may detect fewer circadian metabolites but 
potentially capture more biologically nuanced patterns. In 
JTK_CYCLE, adjusted p-values (ADJ.P) reflect multiple 
testing correction, with ADJ.P < 0.05 commonly used to 
define circadian regulation [38]. However, it is often use-
ful to compare multiple ADJ.P thresholds and empirically 
assess the biological plausibility of rhythmic patterns [80].

The disparity in circadian detection between methods 
highlights how methodological choices can influence the 
interpretation of rhythmicity in high-dimensional omics 
datasets. Nonetheless, the percentage of circadian metabo-
lites reported here aligns with recent findings from a mouse 
circadian metabolome atlas, which showed that 20–50% of 
metabolites across various tissues (SCN, mPFC, muscle, 
BAT, WAT, liver, sperm) and serum displayed 24-hour oscil-
lations regardless of diet [38].

Developmentally, except for isWAT and dlWAT, the 
P20 stage exhibited fewer circadian metabolites than P28 
across all matrices (Fig. 3). Moreover, using the dryR model 
to assess rhythmicity across late developmental stages 
(P20 and P28) in parallel, we observed a loss of rhythm 
in approximately 12% of metabolites, a gain of rhythm in 
13%, stable rhythmicity in 12%, and altered rhythmicity in 
2% (Table S2). The transitional period between P20 and P28 
encompasses physiological and behavioral changes associ-
ated with weaning, likely influencing tissue metabolite 
rhythmicity. At P20, pups are still partially reliant on mater-
nal milk, whereas by P28, they are typically fully weaned 
and consuming solid chow, establishing circadian-regulated 
feeding behaviors more akin to adult patterns. For instance, 
using the “Explorer” function in COMA, we identified char-
acteristic temporal profiles of plasma TGs containing short-
chain saturated fatty acids. These TGs are synthesized de 
novo from maternal milk enriched in saturated fatty acids 
[81]. Their abundance peaks at P10, declines at P20, and 
drops to very low levels by P28, consistent with the weaning 
transition (Fig. S6).

As noted, the metabolome shows dramatic changes from 
fetal to late postnatal stages, as highlighted by the most 
discriminating metabolites in PLS-DA and VIP (Fig. 5) 
through the “Explorer” function. Purine metabolites, such as 
inosine, hypoxanthine, and adenosine, progressively decline 
from E19 to P28 (Fig. S7). This decline likely reflects a 
shift from high purine turnover during rapid growth and 
nucleic acid synthesis to lower metabolic demands in more 
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From a technical perspective, LC–MS-based metabolo-
mics is limited by metabolite coverage, ionization efficiency, 
and semi-quantitative reproducibility across diverse sample 
types [87]. Our combined extraction and LC–MS platforms 
[47] were optimized for high- and medium-abundance 
metabolites but may underrepresent low-abundance spe-
cies. Detecting these would require specialized extraction 
protocols or alternative platforms with higher sensitivity. 
Although MS/MS data were acquired for all study samples, 
many metabolites remain unannotated due to limitations in 
current metabolomics databases. Expanding spectral librar-
ies and incorporating advanced structural elucidation tech-
niques could improve annotation rates [89].
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developmental biology, and raw LC–MS data files are not 
available for reprocessing.

To address this gap, we aimed to create an open-access 
dataset covering the circadian metabolome of multiple rat 
matrices (plasma, tissues, feces), ensuring the data are eas-
ily accessible and readily usable by the scientific commu-
nity. We employed a combined extraction method for polar 
metabolites and complex lipids, followed by a multiplat-
form LC–MS-based approach, expanding the breadth and 
scope of covered metabolites. This enables a more thorough 
examination of circadian metabolic dynamics across differ-
ent developmental stages and tissue types.

By sharing raw LC–MS instrumental files, we enable 
retrospective data mining, allowing for additional annota-
tion of unknowns through MS/MS library searches and 
the potential discovery of novel metabolites. This study 
acquired LC–MS data in data-dependent acquisition (DDA) 
mode for all samples. We also employed iterative exclu-
sion to remove background and previously selected high-
abundance precursor ions, thereby increasing the likelihood 
of capturing MS/MS spectra from less abundant precur-
sors. Additionally, LC–HDX-MS supported structural elu-
cidation by reducing false positives using the number of 
exchangeable hydrogens to refine molecular formulas and 
distinguish isobaric species [87].

Adherence to the FAIR guiding principles ensures that 
metabolomics data generated during our analyses are 
Findable, Accessible, Interoperable, and Reusable (FAIR) 
[88]. This involves making raw instrumental LC–MS files 
publicly available, including samples, blanks, and quality 
control samples. Sharing data in a repository ensures acces-
sibility to the scientific community. The FAIR principles 
also emphasize the importance of using harmonized formats 
to make data interoperable and ensure that data remains 
reusable with long-term validity, independent of time. By 
following these principles, we contribute to the reproduc-
ibility and transparency of metabolomics research.

Limitations of the study

This study used Wistar: Han rats, which may limit the gener-
alizability of the findings to other species, including humans. 
Comparative analyses with genetically modified models 
could offer deeper insight into the role of specific genetic 
factors in shaping circadian metabolic rhythms. In addition, 
the utility of circadian metabolite atlases could be further 
enhanced by integrating non-sacrificial longitudinal sampling 
of biofluids (e.g., urine, blood) and feces under varied light 
and feeding conditions. Such an approach would allow for 
intra-individual tracking of metabolic rhythms, reduce inter-
animal variability, and provide a more ecologically valid and 
clinically relevant picture of circadian metabolite dynamics.
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Supplementary materials and methods 

 

Reagents for LC–MS-based metabolomics 

For sample extraction, methanol (J.T.Baker, catalog no. 9822), methyl tert-butyl ether (Honeywell, catalog no. 

34875), and water (VWR, catalog no. 83645.320) were used. LC–MS-grade solvents for mobile phases included 

acetonitrile (Honeywell, catalog no. 34967), methanol (J.T.Baker, catalog no. 9822), water (VWR, catalog no. 

83645.320), and isopropanol (Supelco, catalog no. 1027812500) [1]. Mobile phase modifiers, such as ammonium 

formate (Supelco, catalog no. 70221), ammonium acetate (Sigma–Aldrich, catalog no. A7330), formic acid (VWR, 

catalog no. 84865.260), and acetic acid (VWR, catalog no. 84874.180), were also of LC–MS-grade quality [1]. For 

HILIC–HDX-MS experiments, ammonium formate-d5 (Merck, catalog no. 795119), formic acid-d2 (CDN Isotopes, 

catalog no. DLM-286-PK), deuterium oxide (Merck, catalog no. 617385), and N1-acetylspermidine (Cayman 

Chemical, catalog no. 9001535) were used [2]. Internal standards were obtained from Avanti, Cayman Chemical, 

CDN Isotopes, Merck, Sigma–Aldrich, and Supelco. 

Sample extraction 

For the sample extraction, a biphasic solvent system of methanol, methyl tert-butyl ether (MTBE), and water was 

used to isolate complex lipids, polar metabolites, and exposome compounds (LIMeX workflow) [1, 3-5]. An aliquot 

of 25 µL was used for plasma, and approximately 20 mg was used for tissues, with exceptions for mPFC (E19: 2–

10 mg; P2–P28: 10 mg), feces (E19: 1.8–5.2 mg; P2–P28: 10 mg), and SCN (dissected SCN was isolated by a pre-

cooled microbiopsy punch, resulting in a cylindrical sample of SCN-containing frozen tissue with a 0.3 mm 

diameter and approximately 0.4 mm height).  

Plasma. A volume of 165 µL methanol containing internal standards (CAR 14:0-d9, CAR 16:0-d3, CAR 18:0-d3, 

Cer d18:1/17:0, cholesterol-d7, CL 16:0/16:0/16:0/16:0, DG 12:0/12:0/0:0, DG 18:1/0:0/18:1-d5, DG 18:1/2:0/0:0, 

Hex-Cer d18:1/17:0, LPC 17:1, LPE 17:1, LPG 17:1, LPS 17:1, MG 17:0/0:0/0:0, oleic acid-d9, PC 15:0/18:1-d7, 

PE 17:0/17:0, PG 17:0/17:0, PI 15:0/18:1-d7, PS 17:0/17:0, SM d18:1/17:0, sphingosine d17:1, TG 17:0/17:1/17:0-

d5, TG 20:0/20:1/20:0-d5) was added to plasma aliquot and shaken (30 s) followed by addition of 600 µL of MTBE 

with internal standard (CE 22:1) and shaking (30 s). Then, 165 µL of 10% methanol containing also internal 

standards (3-hydroxybutyric acid-d4, acetylcholine-d4, alanine(13C3; 15N), arginine(13C6; 15N4), aspartic 

acid(13C4; 15N), betaine-d9, butyrobetaine-d9, caffeine-d9, carnitine-d9, CAR 2:0-d3, CAR 3:0-d3, CAR 4:0-d3, CAR 

6:0-d3, CAR 8:0-d3, CAR 10:0-d3, CAR 12:0-d9, choline-d9, citrulline-d4, cotinine-d3, creatine-d3, creatinine-d3, 

cystine(13C6; 15N2), glucose-d7, glutamic acid(13C5; 15N), glycine(13C2; 15N), histidine(13C6; 15N3), 

isoleucine(13C6; 15N), leucine(13C6; 15N), lysine(13C6; 15N2), metformin-d6, methionine(13C5; 15N), N-

methylnicotinamide-d4, ornithine-d6, phenylalanine(13C9; 15N), proline(13C5; 15N), serine(13C3; 15N), succinic acid-

d4, threonine(13C4; 15N), trimethylamine N-oxide-d9, tyrosine(13C9; 15N), valine(13C5; 15N)) was added, the tubes 

were vortexed (10 s) and centrifuged (16,000 rpm, 5 min, 4 °C). 

The first aliquot of 60 µL of the bottom phase was collected and evaporated to analyze polar metabolites. The dry 

plasma extracts were resuspended in 60 µL of an acetonitrile/water (4:1) mixture with two internal standards (12-

[[(cyclohexylamino)carbonyl]amino]-dodecanoic acid (CUDA) and Val-Tyr-Val), shaken (30 s), centrifuged 

(16,000 rpm, 5 min, 4 °C), and analyzed using the HILIC metabolomics platforms in positive and negative 

electrospray ionization (ESI) mode. The second 60 µL aliquot of the bottom phase was mixed with 180 µL of an 

isopropanol/acetonitrile (1:1) mixture, shaken (30 s), centrifuged (16,000 rpm, 5 min, 4 °C), and the supernatant 

was evaporated. The dry plasma extracts were resuspended in 5% methanol/0.2% formic acid containing two 

internal standards (CUDA and Val-Tyr-Val), shaken (30 s), centrifuged (16,000 rpm, 5 min, 4 °C), and analyzed 

using the RPLC metabolomics platform in positive and negative ESI mode. An aliquot of 100 µL of the upper phase 

was collected and evaporated to analyze complex lipids. The dry extracts were resuspended in 100 µL methanol 

containing internal standards (arachidonic acid-d11, CAR 24:0-d4, CE 18:1-d7, Cer d18:1/10:0, CUDA, DG 

15:0/18:1-d7, GlcCer d18:1/12:0, LPC 18:1-d7, LPE 18:1-d7, LPG 13:0, LPI 17:1, LPS 13:0, MG 18:1-d7, PC 

13:0/13:0, PE 15:0/18:1-d7, PG 15:0/18:1-d7, PI 8:0/8:0, PS 14:0/14:0, sGalCer d18:1/12:0, SM d18:1/12:0, 

sphingosine 18:1-d7, TG 15:0/18:1/15:0-d7), shaken (30 s), centrifuged (16,000 rpm, 5 min, 4 °C), and analyzed 

using the RPLC lipidomics platform in positive and negative ESI mode. 
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Tissues and feces. Tissue and feces sample aliquots were homogenized with 275 μL methanol containing internal 

standards using a grinder (frequency 1/s: 30, 1.5 min). Then, 1 mL of MTBE with internal standard was added, and 

the tubes were shaken (30 s). A volume of 275 μL 10% methanol was added, and after vortexing (10 s), the tubes 

were centrifuged (16,000 rpm, 5 min, 4 °C). Analysis of polar metabolites was performed similarly to that of plasma 

samples. For complex lipid analysis, 100 µL aliquots were collected for feces and tissues except for mPFC and 

SCN; in this case, 400 µL aliquots were taken to increase the lipidome coverage. After solvent evaporation, the dry 

extracts were resuspended in 100 µL (feces), 300 µL (non-fat tissues), or 50 µL (mPFC, SCN) methanol containing 

a mixture of internal standards, shaken (30 s), centrifuged (16,000 rpm, 5 min, 4 °C), and analyzed using the RPLC 

lipidomics platform in positive and negative ESI mode. 

Adipose tissues. Adipose tissue sample aliquots were homogenized with 275 μL methanol containing internal 

standards using a grinder (frequency 1/s: 30, 1.5 min). Then, 1 mL of MTBE with internal standard was added, and 

the tubes were shaken (30 s). A volume of 275 μL 10% methanol was added, and after vortexing (10 s), the tubes 

were centrifuged (16,000 rpm, 5 min, 4 °C). Analysis of polar metabolites was performed similarly to that of plasma 

samples. For analysis of minor complex lipids, 100 µL of the upper organic phase was collected, evaporated, 

resuspended using 100 µL 90% methanol with an internal standard (CUDA), shaken (30 s), centrifuged (16,000 

rpm, 5 min, 4 °C), and analyzed using the RPLC lipidomics platform in positive and negative ESI mode. For analysis 

of abundant triacylglycerols, 10 µL aliquot of the upper organic phase was collected, evaporated, resuspended using 

1 mL methanol containing a mixture of internal standards, shaken (30 s), centrifuged (16,000 rpm, 5 min, 4 °C), 

and analyzed using the RPLC lipidomics platform in positive ESI mode. 

LC–MS analysis 

For LC–MS analysis, a Vanquish UHPLC system (Thermo Fisher Scientific), a heated electrospray ionization 

(HESI-II) probe (Thermo Fisher Scientific), and a Q Exactive Plus mass spectrometer (Thermo Fisher Scientific) 

were used [4]. 

Polar metabolites. For the separation of polar metabolites based on the HILIC mechanism, the following conditions 

were used: an ACQUITY Premier BEH Amide column (50 mm length × 2.1 mm i.d.; 1.7 μm particle size) with a 

VanGuard FIT cartridge (5 mm length × 2.1 mm i.d.; 1.7 μm particle size) (Waters, catalog no. 186010380); column 

compartment temperature, 45 °C; column flow rate, 0.8 mL/min; mobile phase A, water with 10 mM ammonium 

formate and 0.125% formic acid; mobile phase B, acetonitrile/water (95:5) with 10 mM ammonium formate and 

0.125% formic acid; gradient run, 0 min 100% B, 0–0.5 min 100% B, 0.5–2.0 min from 100% to 70% B, 2.0–2.6 

min from 70% to 30% B, 2.6–3.2 min from 30% to 100% B, 3.2–3.4 min 100% B +1 min preinjection steps; 

injection volumes, 0.3–1 μL (based on the matrix) in ESI(+) and 5 µL in ESI(−) [4]. For the HILIC–HDX-MS 

platform, the conditions were identical, except for using mobile phase A consisting of D2O with 10 mM ammonium 

formate-d5 and 0.125% formic acid-d2, and mobile phase B made from acetonitrile/D2O (95:5) with 7.5 mM 

ammonium formate-d5 and 0.125% formic acid-d2 [2].  

For the separation of polar metabolites based on the RPLC mechanism, the following conditions were applied: an 

ACQUITY Premier HSS T3 column (50 mm length × 2.1 mm i.d.; 1.8 μm particle size) with a VanGuard FIT 

cartridge (5 mm length × 2.1 mm i.d.; 1.8 μm particle size) (Waters, catalog no. 186009470); column compartment 

temperature, 45 °C; column flow rate, 0.6 mL/min; mobile phase A, water with 0.2% formic acid; mobile phase B, 

methanol with 0.1% formic acid; gradient run, 0 min 1% B, 0–0.5 min 1% B, 0.5–2 min from 1% to 60% B, 2–2.3 

min from 60% to 99% B, 2.3–2.8 min 99% B, 2.8–2.9 min from 99% to 1% B, 2.9–3.4 min 1% B + 1 min 

preinjection steps; injection volumes, 1–2 μL (based on the matrix) in ESI(+) and 5 µL in ESI(−) [4]. 

The ion source parameters were as follows: sheath gas pressure, 60 arbitrary units (a.u.); aux gas flow, 25 a.u.; 

sweep gas flow, 4 a.u.; capillary temperature, 300 °C; aux gas heater temperature, 475 °C; spray voltage: 3.5 kV 

for ESI(+), −3.0 kV for ESI(−). The MS settings were: MS1 mass range, m/z 60–900; MS1 resolving power, 17,500 

FWHM; AGC target, 1e6; maximum IT, 50 ms; spectrum data type, centroid; the number of data-dependent scans 

per cycle, 2; MS/MS resolving power, 17,500 FWHM; AGC target, 1e5; maximum IT, 50 ms; spectrum data type, 

centroid; isolation window, 1 m/z; minimum AGC target, 5e2; dynamic exclusion, 2 s; exclude isotopes, on; 

normalized collision energies: 20, 30, and 40% [4]. 

Complex lipids. For the separation of complex lipids based on the RPLC mechanism, the following conditions were 

used: an ACQUITY Premier BEH C18 column (50 mm length × 2.1 mm i.d.; 1.7 μm particle size) with a VanGuard 
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FIT cartridge (5 mm length × 2.1 mm i.d.; 1.7 μm particle size) (Waters, catalog no. 186009455); column 

compartment temperature, 65 °C; column flow rate, 0.8 mL/min. For ESI(+), the conditions were as follows: mobile 

phase A, 60:40 acetonitrile/water with 10 mM ammonium formate and 0.1% formic acid; mobile phase B, 90:10:0.1 

isopropanol/acetonitrile/water with 10 mM ammonium formate and 0.1% formic acid; gradient run, 0 min 15% B, 

0–0.5 min from 15% to 30% B, 0.5–0.6 min from 30% to 50% B, 0.6–2.8 min from 50% to 80% B, 2.8–3.2 min 

from 80% to 99% B, 3.2–3.4 min 99% B, 3.4–3.5 min from 99% to 15% B, 3.5–3.7 min 15% B + 1 min preinjection 

steps. For ESI(−), the conditions were as follows: mobile phase A, 60:40 acetonitrile/water with 10 mM ammonium 

acetate and 0.1% acetic acid; mobile phase B, 90:10:0.1 isopropanol/acetonitrile/water with 10 mM ammonium 

acetate and 0.1% acetic acid; gradient run, 0 min 15% B, 0–0.5 min from 15% to 30% B, 0.5–0.6 min from 30% to 

50% B, 0.6–2.4 min from 50% to 75% B, 2.4–2.5 min from 75% to 99% B, 2.5–2.9 min 99% B, 2.9–3.0 min from 

99% to 15% B, 3.0–3.2 min 15% B + 1 min preinjection steps; injection volumes, 0.3–5 μL (based on the matrix) 

in ESI(+) and 5 µL in ESI(−) [4]. 

The ion source parameters were as follows: sheath gas pressure, 60 a.u.; aux gas flow, 25 a.u.; sweep gas flow, 4 

a.u.; capillary temperature, 300 °C; aux gas heater temperature, 475 °C; spray voltage: 3.5 kV for ESI(+), −3.0 kV 

for ESI(−). The MS settings were: MS1 mass range, m/z 200–1700 for ESI(+), m/z 199–1700 for ESI(−); MS1 

resolving power, 35,000 FWHM; AGC target, 1e6; maximum IT, 100 ms; spectrum data type, centroid; the number 

of data-dependent scans per cycle, 2; MS/MS resolving power, 17,500 FWHM; AGC target, 1e5; maximum IT, 50 

ms; spectrum data type, centroid; isolation window, 1 m/z; minimum AGC target, 5e2; dynamic exclusion, 2 s; 

exclude isotopes, on; normalized collision energies: 20% for ESI(+) and 10, 20, and 30% for ESI(−) [4]. 

Enhancing the acquisition of MS/MS spectra. During LC–MS analysis, we implemented critical rules to enhance 

metabolome coverage by increasing the acquired MS/MS spectra for metabolite annotation. These rules involved 

optimizing the number of MS/MS scans per cycle, establishing an appropriate threshold for precursor ion selection, 

using an exclusion list, employing filters for precursor selection (e.g., isotope exclusion function and charge state), 

and conducting data-dependent acquisition (DDA) on all measured samples for optimal performance [6]. For each 

LC–MS platform, an initial exclusion list, consisting of m/z values across the entire retention time range (i.e., 

background contamination, impurities from mobile phases), was generated following the injection of the 

resuspension solvent. Subsequently, MS1 acquisition and DDA-MS/MS were conducted for all pool QC and SQC 

samples. The ProteoWizard software was employed to generate an MS2 file with specific parameters (peak picking 

(vendor): level, 2-2; msLevel, 2-2; threshold, absolute 0.0001 most intense; output, MS2). This MS2 file was then 

processed by an R script (https://secim.ufl.edu/secim-tools/ie-omics) [7]. An updated exclusion list in CSV format 

was exported, containing both previously excluded m/z values (IE-1) and newly excluded m/z values (IE-2), 

primarily associated with high-abundance precursor ions of metabolites. MS/MS spectra were acquired for high-

abundance precursor ions in 15 samples (method IE-1) within each group of samples during the run. Simultaneously, 

MS/MS spectra for low-abundance precursor ions were acquired for the remaining 20 samples within each group 

(method IE-2). Both methods (IE-1 and IE-2) alternated during the injection of SQC samples. Additional MS/MS 

spectra were also acquired using SQC samples and splitting the MS1 mass range into 10 sub-mass ranges to select 

precursor ions. 

Quality control. Due to the high number of samples analyzed, we implemented various quality control measures 

throughout the metabolomics analyses to ensure data reliability (Fig. S1), specifically (i) randomization of the actual 

samples within the sequence based on the matrix and developmental stage, (ii) injection of quality control (QC) 

pool samples for each matrix at the beginning, the end, and between every 35 actual samples (for particular matrix), 

(iii) injection of superior QC samples (SQC), a mix of pool QC samples of all matrices, at the beginning and the 

end of the sequence and between every 35 actual samples throughout the whole sequence regardless the matrix, (iv) 

analysis of method blanks, (v) serial dilution of SQC sample (0, 1/16, 1/8, 1/4, 1/2, 1), and (vi) checking the peak 

shape and the intensity of spiked internal standards and the internal standards added prior to injection [4]. 

LC–MS data processing 

All the LC–MS raw files were converted into ABF format using an ABF converter 

(https://www.reifycs.com/abfconverter). MS-DIAL v. 4.92 software was used to process converted LC–MS files, 

including peak detection, deconvolution, alignment, and metabolite annotation 

(https://systemsomicslab.github.io/compms/msdial/main.html) [8]. The following parameters were used: (i) data 

collection: MS1 tolerance, 0.01; MS2 tolerance, 0.025; (ii) peak detection: minimum peak height, 20,000; mass 

https://secim.ufl.edu/secim-tools/ie-omics/
https://www.reifycs.com/abfconverter/
https://systemsomicslab.github.io/compms/msdial/main.html
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slice width, 0.05; smoothing method, Linear Weighted Moving Average; smoothing level, 2; (iii) MS/MS 

identification setting: accurate mass tolerance (MS1), 0.01; accurate mass tolerance (MS2), 0.025; identification 

score cut off, 80%; (iv) alignment: retention time tolerance, 0.05 min; MS1 tolerance, 0.01 Da; peak count filter, 

5%; gap filling by compulsion, true.  

Metabolites were annotated based on retention time–accurate mass (MS1, MS/MS) match from an in-house spectral 

library (MSI Level 1) along with MS/MS libraries from various sources (NIST20, MassBank.us, and MS-DIAL 

MS/MS library v. 15) (MSI Level 2). Complex lipids were annotated using in-silico MS/MS spectra available in 

MS-DIAL software (MSI Levels 2–3). The exported sets were further filtered based on a max sample peak 

height/blank peak height average <10, an R2 <0.8 from a dilution series of SQC samples, and a relative standard 

deviation (RSD) >30% from SQC samples [4]. Data were then normalized using locally estimated scatterplot 

smoothing (LOESS) with SQC samples injected between 35 actual study samples, and for tissues and feces, based 

on the amount taken for the analysis. Before statistical analysis, metabolites with more than 50% missing values for 

each developmental stage and matrix were excluded, and missing data were imputed by replacing 1/5 of the minimal 

positive values of their corresponding variables for each developmental stage and matrix. 

MS-FINDER software v. 3.60 (https://systemsomicslab.github.io/compms/msfinder/main.html) [9] was used for 

the structure elucidation of N1-acetylspermidine with the following parameters: mass tolerance (MS1), 0.005 Da; 

mass tolerance (MS2), 0.005; relative abundance cut-off, 0.1%; LEWIS and SENIOR check, checked; isotopic ratio 

tolerance, 20%; element ratio check, common range (99.7%); element selection, O, N, P, S; tree depth, 2; local 

databases + MiNEs + PubChem, checked [2].  

ProteoWizard software v. 3.0.22342 (https://proteowizard.sourceforge.io) [10] was used to convert raw LC–MS 

instrumental files to mzXML format for all platforms. 
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Fig. S1 Schematic overview of the LC–MS data acquisition sequence. The sequence begins with solvent injections 

to equilibrate the LC–MS platform, followed by a system suitability test (SST) using a mixture of standards, 

injections of superior quality control (SQC) samples, and a dilution series of the SQC. Each randomized sample set, 

organized by matrix and developmental stage, is bracketed by injections of matrix-specific QC samples and the 

SQC (a pooled sample of all matrix-based QCs). The sequence also includes method blank injections to monitor 

background contamination. 

  

Injection order 

Solvent prerun S O L V E N T R U N

SST, preinjection SQC SST SQC

SQC & dilution series of SQC SQC SD SD SD SD SD SD

SQC SQC

QC, matrix 1 QC

S S S S S S S S S S

S S S S S S S S S S

S S S S S S S S S S

S S S S S

SQC SQC

QC, matrix 1 QC

S S S S S S S S S S

S S S S S S S S S S

S S S S S S S S S S

S S S S S

SQC SQC

QC, matrix 1 QC

S S S S S S S S S S

S S S S S S S S S S

S S S S S S S S S S

S S S S S

QC, matrix 1 QC

SQC SQC

… …

SQC SQC

QC, matrix 10 QC

S S S S S S S S S S

S S S S S S S S S S

S S S S S S S S S S

S S S S S

SQC SQC

QC, matrix 10 QC

S S S S S S S S S S

S S S S S S S S S S

S S S S S S S S S S

S S S S S

QC, matrix 10 QC

SQC SQC

… …

SQC SQC

Blanks BL BL BL BL BL BL BL BL BL BL

… …

SQC & dilution series of SQC SQC SD SD SD SD SD SD

SQC, MS/MS acquisition for MS1 sub-mass ranges SQC SQC SQC SQC SQC SQC SQC SQC SQC SQC

Randomized samples, matrix 1, devel. stage 1

Randomized samples, matrix 1, devel. stage 2

Randomized samples, matrix 1, devel. stage 3

Randomized samples, matrix 10, devel. stage 1

Randomized samples, matrix 10, devel. stage 2
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Fig. S2 PCA of 1610 study samples (blue) and corresponding SQC samples (red), based on 851 metabolites. The 

tight clustering of SQC samples indicates low technical variability and high reliability of the metabolomic analyses. 
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Fig. S3 PCA of study samples colored by a particular matrix and SQC samples based on 851 metabolites. Legend: 

dorso-lumbar white adipose tissue (dlWAT), feces (FCS), gastrocnemius skeletal muscle (GMSC), heart (HRT), 

intrascapular brown adipose tissue (iBAT), intrascapular white adipose tissue (isWAT), kidney (KID), liver (LIV), 

lungs (LNG), medial prefrontal cortex (mPFC), pancreas (PNC), plasma (PLS), small intestine (jejunum) (SINT), 

spleen (SPL), stomach (STM), suprachiasmatic nucleus (SCN). 
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Fig. S4 Example of results from lipid over-representation analysis for plasma at P28, specifically focusing on cluster 

A. The UpSet plot displays the intersection of over-expressed terms, representing structural characteristics. 

Cardinality is then sorted based on the total number of term intersections, with each cluster containing lipids that 

share a particular structural feature. For enrichment analysis, the Fisher exact test (greater) followed by multiple 

hypothesis testing (FDR (Benjamini–Hochberg) and an alpha level of 0.005 was used. 

 

 

 
 

Fig. S5 Expression of clock gene Per2 in the SCN at different developmental stages. 
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Fig. S6 Profiles of selected plasma triacylglycerols (TGs) containing short-chain saturated fatty acids. TGs were 

selected based on PLS-DA with a VIP score>1. 

 

 

 

Fig. S7 Profiles of inosine, hypoxanthine, and adenosine detected in plasma based on developmental stage. 

Metabolites were selected based on PLS-DA with a VIP score>1. 

 

 

 

Fig. S8 Profiles of hexosylceramides in mPFC based on developmental stage. Metabolites were selected based on 

PLS-DA with a VIP score>1. 
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